skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crane, Adele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wong, A (Ed.)
    Abstract Bacteriophages infecting pathogenic hosts play an important role in medical research, not only as potential treatments for antibiotic-resistant infections but also offering novel insights into pathogen genetics and evolution. A prominent example is cluster K mycobacteriophages infecting Mycobacterium tuberculosis, a causative agent of tuberculosis in humans. However, as handling M. tuberculosis as well as other pathogens in a laboratory remains challenging, alternative nonpathogenic relatives, such as Mycobacterium smegmatis, are frequently used as surrogates to discover therapeutically relevant bacteriophages in a safer environment. Consequently, the individual host ranges of the majority of cluster K mycobacteriophages identified to date remain poorly understood. Here, we characterized the complete genome of Stinson, a temperate subcluster K1 mycobacteriophage with a siphoviral morphology. A series of comparative genomic analyses revealed strong similarities with other cluster K mycobacteriophages, including the conservation of an immunity repressor gene and a toxin/antitoxin gene pair. Patterns of codon usage bias across the cluster offered important insights into putative host ranges in nature, highlighting that although all cluster K mycobacteriophages are able to infect M. tuberculosis, they are less likely to have shared an evolutionary infection history with Mycobacterium leprae (underlying leprosy) compared to the rest of the genus’ host species. Moreover, subcluster K1 mycobacteriophages are able to integrate into the genomes of Mycobacterium abscessus and Mycobacterium marinum—two bacteria causing pulmonary and cutaneous infections which are often difficult to treat due to their drug resistance. 
    more » « less